Autocorrelation Patterns in the Left-Ventricular Pressure Course of Isolated Working Hearts at Sinus Rhythm

Stefan F. J. Langer

Abstract


Background
Observations of short term uniformity or microrhythmical undulation in ventricular pressure courses at sinus rhythm are lacking but necessary to describe cardiac status. The present investigation aims for (a) detecting repetitive similarity patterns in ventricular pressure at isolated sinus rhythm, (b) tagging hemodynamic parameters which contribute most to dissimilarity, and
(c) for a stochastical characterisation of the random component in mutual similarity.

Methods
Left-ventricular pressure curves from isolated working small animal hearts, at sinus rhythm and electrical stimulation, are analysed by autocorrelation.

Results
Ventricular pressure courses consistently reach their peak coefficient of autocorrelation either at one-beat lag (monorhythm) or at two-beat lag (duorhythm). Replacing sinus rhythm with strictly even electrical right-atrial stimulation provokes more duorhythms to occur (Langer paradox). Duorhythms become scarcer at hypothermia and high cardiac output. Repetition of very similarly shaped beats accords with an exponential law. Variability of twelve hemodynamic parameters, regarding microrhythm, is given as a Table.

Conclusions
(a) Incidence of alternating patterns (duorhythms) suggests the presence of effective heterometric autoregulation (Frank-Starling law). Consequently, a pacing test may assess contractile reserve in certain conditions. Higher multi-beat patterns occur by chance at isolated sinus rhythm. (b) Interbeat variability of relevant hemodynamic parameters complies with the initial conclusion. Statistical pooling of data from consecutive beats seems permissible; pooling alterant beats separately will do better. (c) Random fluctuation is a constituent part of medium-term ventricular pressure course. Mutually very similar beats occur stochastically by a Poisson process with fade-out. Deviations accord with the presence of mono- or duorhythms.

Keywords


ventricular pressure; autocorrelation analysis; Frank-Starling law; stochastics; isolated heart

Full Text:

Langer pp57-67 HTML

References


Koch--Weser J, Blinks JR. The influence of the interval between beats on myocardial contractility [review]. Pharmacol. Rev. 1963;15: 601--652 (http://pharmrev.aspetjournals.org/content/15/3/601.long).

Clay JR, DeHaan RL. Fluctuations in interbeat interval in rhythmic heart--cell clusters. Biophys.J.1979;28: 377--390 (DOI: 10.1016/s0006-3495(79)85187-5).

Jongsma HJ, Tsjernina L, DeBruijne J. The establishment of regular beating in populations of pacemaker heart cells. A study with tissue--cultured rat heart cells. J.Mol. Cell.Cardiol. 1983;15: 123--133 (DOI: 10.1016/0022-2828(83)90288-2).

Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator? Biol.Cybern. 1988;58: 203--211 (DOI: 10.1007/bf00364139).

Meyer M, Stiedl O. Self--affine fractal variability of human heartbeat interval dynamics in health and disease [review]. Eur. J. Appl. Physiol. 2003;90: 305--316 (DOI: 10.1007/s00421-003-0915-2).

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur.Heart J. 1996;17: 354--381 (DOI: 10.1093/oxfordjournals.eurheartj.a014868), and Circulation 1996;93: 1043--1065 (DOI: 10.1161/01.CIR.93.5.1043).

Hwang JS, Hu TH, Chen LC. An index related to the autocorrelation function of RR intervals for the analysis of heart rate variability. Physiol. Meas. 2006;27: 339--352 (DOI: 10.1088/0967-3334/27/4/002).

Langer SFJ, Schmidt HD: Different left ventricular relaxation parameters in isolated working rat and guinea pig hearts. Influence of preload, afterload, temperature and isoprenaline. Int. J. Card. Imaging 1998;14: 229--240 (DOI: 10.1023/a:1006083306901).

Karlin S, Taylor HM. A First Course in Stochastic Processes [2nd ed, reprint]. New York etc: Academic Press 2011.

Langer SFJ. Ransacking the curve of cardiac isovolumic pressure decay by logistic and oscillation regression. Jpn. J. Physiol. 2004;54: 347-356 (DOI: 10.2170/jjphysiol.54.347).

Sachs L. Angewandte Statistik [6th ed; engl.ed. as: Applied Statistics, 2nd ed]. Berlin etc: Springer 1984 (DOI: 10.1007/978-3-662-05750-6).

Langer SFJ: Efficient exponential regression with exact fiducial limits to fit cardiac pressure data. Comput. Methods Programs Biomed. 1997;53: 57--64 (DOI: 10.1016/s0169-2607(97)01802-6).

Angelakos ET, Shepherd GM. Autocorrelation of electrocardiographic activity during ventricular fibrillation. Circ. Res. 1957;5: 657-658 (DOI: 10.1161/01.RES.5.6.657).

Aubert AE, Denys BG, Ector H, DeGeest H. Automatic detection of ventricular tachycardia and fibrillation using ECG processing and intramyocardial pressure measurement. Comput. Biomed. Res. 1994;27: 367-382 (DOI: 10.1006/cbmr.1994.1028).

Meijler FL, Strackee J, van Capelle FJL, du Perron JC. Computer analysis of the RR interval-contractility relationship during random stimulation of the isolated heart. Circ. Res. 1968;22: 695--702 (DOI: 10.1161/01.RES.22.5.695).

Gosselink ATM, Blanksma PK, Crijns HJGM, van Gelder IC, de Kam PJ, Hillege HL, Niemeijer MG, Lie KI, Meijler FL. Left ventricular beat--to--beat performance in atrial fibrillation: contribution of Frank--Starling mechanism after short rather than long RR intervals. J. Am. Coll. Cardiol. 1995;26: 1516--1521 (DOI: 10.1016/0735-1097(95)00340-1).

Langer SFJ, Lambertz M, Langhorst P, Schmidt HD. Interbeat interval variability in isolated working rat hearts at various dynamic conditions and temperatures. Res. Exp. Med. 1999;199: 1-19 (DOI: 10.1007/s004330050128).

Bukauskas FF, Weingart R. Temperature dependence of gap junction properties in neonatal rat heart cells. Pflugers Arch. 1993;423: 133-139 (DOI: 10.1007/bf00374970).

Lakatta EG. Length modulation of muscle performance: Frank--Starling law of the heart. In Fozzard HA et al. [eds]. The Heart and Cardiovascular System, Vol. 2, Chp. 40. New York, Raven Press 1986.

deTombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation [review]. J. Mol. Cell. Cardiol. 2010;48: 851-858 (DOI: 10.1016/j.yjmcc.2009.12.017).

Levick JR. An Introduction to Cardiovascular Physiology [3rd ed], Chp. 7. London etc: Edward Arnold Publ. 2000.

Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Cardiac thin filament regulation and the Frank-Starling mechanism [review]. J. Physiol. Sci. 2014;64: 221-232 (DOI: 10.1007/s12576-014-0314-y).

Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute myocardial response to stretch: What we (don't) know [review]. Front. Physiol. 2016;6: Article 408 (DOI: 10.3389/fphys.2015.00408).

Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML, Irving TC, de Tombe PP. Titin strain contributes to the Frank--Starling law of the heart by structural rearrangements of both thin-- and thick--filament proteins. Proc. Natl. Acad. Sci. U S A. 2016;113: 2306-2311 (DOI: 10.1073/pnas.1516732113).

Frye RL, Braunwald E. Studies on Starling's law of the heart. I. The circulatory response to acute hypervolemia and its modification by ganglionic blockade. J. Clin. Invest. 1960;39: 1043-1050 (DOI: 10.1172/JCI104119).

Boettcher DH, Vatner SF, Heyndrickx GR, Braunwald E. Extent of utilization of the Frank-Starling mechanism in conscious dogs. Am. J. Physiol. 1978;234: H338--H345 (http://ajpheart.physiology.org/content/234/4/H338.long).

Bershitskaya ON, Izakov VY, Lysenko LT, Protsenko JL, Trubetskoy AV. Certain characteristics of myocardial contractility of isovolumic dog heart at randomly variable heart rhythm. Basic Res. Cardiol. 1985;80: 156--164 (http://link.springer.com/article/10.1007%2FBF01910463).

Popovic ZB, Yamada H, Mowrey KA, Zhang Y, Wallick DW, Grimm RA, Thomas JD, Mazgalev TN. Frank-Starling mechanism contributes modestly to ventricular performance during atrial fibrillation. Heart Rhythm 2004;1: 482--489 (DOI: 10.1016/j.hrthm.2004.06.016).

MacDonald N. Time Lags in Biological Models. Lecture Notes in Biomathematics, Vol. 27. Berlin etc: Springer 1978 (DOI: 10.1007/978-3-642-93107-9).

Dumitrescu C, Narayan P, Efimov IR, Cheng Y, Radin MJ, McCune SA, Altschuld RA. Mechanical alternans and restitution in failing SHHF rat left ventricles. Am. J. Physiol. Heart. Circ. Physiol. 2002;282: H1320-H1326 (DOI: 10.1152/ajpheart.00466.2001).

Schipke JD, Sunderdiek U, Arnold G. Effect of changes in aortic pressure and in coronary arterial pressure on left ventricular geometry and function Anrep vs. gardenhose effect. Basic Res. Cardiol. 1993;88: 621--637 (DOI: 10.1007/bf00788879).

Shewan LG, Coats AJS, Henein M. Requirements for ethical publishing in biomedical journals. International Cardiovascular Forum Journal 2015;2:2 (DOI: 10.17987/icfj.v2i1.4).




DOI: https://doi.org/10.17987/icfj.v8i0.278

Copyright (c) 2016 Stefan F. J. Langer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.