Spiral Flow Fube for Contrast Medium Reduction in Coronary CT Angiography

Nobuo Tomizawa, Yayoi Hayakawa, Shinichi Inoh, Takeshi Nojo, Satoshi Uemura, Sunao Nakamura

Abstract


Objectives

To assess the diagnostic performance and enhancement of coronary CT with reduced contrast medium using the spiral flow tube compared with the T-shaped tube.

Methods

We retrospectively included 444 patients who underwent catheter examination within 2 months after coronary CT. The first 222 patients received 21.0 mgI/kg/s of contrast medium using the T-shaped tube and the injected contrast medium was reduced by 6% (19.8 mgI/kg/s) in the last 222 patients using the spiral flow tube. We compared the per vessel diagnostic performance for detecting obstructive stenosis (≥50%) by catheter examination and the enhancement of proximal coronary arteries.

Results

The sensitivity, specificity, positive predictive value, negative predictive value and accuracy was 96%, 84%, 72%, 98% and 87% using the spiral flow tube and 93%, 83%, 68%, 97% and 86% using the T-shaped tube, respectively, without significance. The enhancement of left main (spiral flow vs T-shape, 407 ± 53 vs 407 ± 62 HU, p = 0.95) and right coronary (419 ± 58 vs 415 ± 61 HU, p = 0.49) arteries did not show significant difference.

Conclusions

The spiral flow tube would maintain the diagnostic performance and coronary enhancement with reduced contrast medium compared with the T-shaped tube.


Keywords


Coronary CT angiography; coronary enhancement; image quality; saline flush; spiral flow tube

Full Text:

PDF HTML

References


Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Eng J Med 2008;359:2324-2336. DOI: 10.1056/NEJMoa0806576

Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int 2005;68:2256-2263. DOI: 10.1111/j.1523-1755.2005.00684.x

Kim DJ, Kim TH, Kim SJ, et al. Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 2008;246:110-115. DOI: 10.1148/radiol.2453061953

Kidoh M, Nakaura T, Awai K, et al. Novel connecting tube for saline chaser in contrast-enhanced CT: the effect of spiral flow of saline on contrast enhancement. Eur Radiol 2013;23:3213-3218. DOI: 10.1007/s00330-013-2923-x

Masuda T, Funama Y, Nakaura T, et al. Delivenng the saline chaser via a spiral flow-generating tube improves arteriaI enhancement for computed tomography angiography of the lower extremities. J Comput Assist Tomogr 2015;39:962-968. DOI: 10.1097/RCT.0000000000000292

Tomizawa N, Hayakawa Y, Inoh S, et al. Spiral flow tube for saline flush in coronary CT angiography: Initial experience. Int J Radiol 2016;3:56-60. DOI: 10.17554/j.issn.2313-3406.2016.03.31

Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827-832.

Raff GL, Abidov A, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 2009;3:122-136. DOI: 10.1016/j.jcct.2009.01.001

Alami Z, Nasri S, Ahid S, Kacem HH. Extravasation of contrast medium during CT examination: an observational case-control study. Pan Afr Med J 2015 doi: 10.11604/pamj.2015.20.89.3276. DOI: 10.11604/pamj.2015.20.89.3276

Li H, Tomita Y. An experimental study of swirling flow pneumatic conveying system in a vertical pipeline. J Fluid Eng 1998;118:526-530.

Li H, Tomita Y. An experimental study of swirling flow pneumatic conveying system in a horizontal pipeline. J Fluid Eng 1996;118:526-530.

Orlandini F, Boini S, Iochum-Duchamps S, Batch T, Zhu X, Blum A. Assessment of the use of a saline chaser to reduce the volume of contrast medium in abdominal CT. Am J Roentgenol 2006;187:511-515. DOI: 10.2214/AJR.04.0942

Dorio PJ, Lee FT Jr, Henseler KP, et al. Using a saline chaser to decrease contrast media in abdominal CT. Am J Roentgenol 2003;180:929-934. DOI: 10.2214/ajr.180.4.1800929

Utsunomiya D, Awai K, Tamura Y, et al. 16-MDCT aortography with a low-dose contrast material protocol. Am J Roentgenol 2006;186:374-378. DOI: 10.2214/AJR.04.1459

Kubo S, Tadamura E, Yamamuro M, et al. Thoracoabdominal-aortoiliac MDCT angiography using reduced dose of contrast material. Am J Roentgenol 2006;187:548-554. DOI: 10.2214/AJR.05.0309

Cademartiri F, Maffei E, Palumbo AA, et al. Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 2008;18:576-583. DOI: 10.1007/s00330-007-0773-0

Puchner SB, Ferencik M, Maurovich-Horvat P, et al. Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque--a comparison with histology. Eur Radiol 2015;25:15-23. DOI: 10.1007/s00330-014-3404-6

Shewan LG, Coats AJS, Henein M. Requirements for ethical publishing in biomedical journals. International Cardiovascular Forum Journal 2015;2:2 DOI: 10.17987/icfj.v2i1.4




DOI: https://doi.org/10.17987/icfj.v9i0.375

Copyright (c) 2017 Nobuo Tomizawa, Yayoi Hayakawa, Shinichi Inoh, Takeshi Nojo, Satoshi Uemura, Sunao Nakamura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.