Value of Cardiac Magnetic Resonance Imaging in Fabry Disease

Laura Dragonetti, Marcelo Pietrani, Carlos Rivas, Diego Pérez de Arenaza, Eduardo Eyheremendy, Rebeca Kozzor, Ricardo García Mónaco, James Moon



Background: Cardiovascular magnetic resonance (CMR) can measure cardiac structure, function and characterize myocardial tissue. The full potential of CMR for Fabry disease (FD) is yet to be defined. The objective of the present work was to assess the clinical utility of CMR for the detection and classification of cardiac involvement in patients with FD.

Methods: This is retrospective observational study of CMR scans performed in 99 unique FD patients from 2 hospitals in Argentina between April 2005 and October 2013. Diagnosis of FD was confirmed by measurement of alpha galactosidase A activity on plasma and peripheral leukocytes (males) or genetic testing (females).

Results: Ninety nine FD patients (61 females and 38 males), mean age 35 SD 15 years, underwent CMR. Cardiac involvement was present in 56% of cases. Left ventricular hypertrophy (LVH) was present in 44% and left ventricular (LV) impairment in 8% (mean left ventricular ejection fraction 49%, range 40-54%). Late gadolinium enhancement (LGE) was present in 33% of cases and was more common with age and when LVH was present. Of the LVH patients, 59% had LGE compared to 13% without LVH (p<0.001).

Conclusion: CMR is a useful diagnostic tool in detecting and classifying cardiac involvement of FD, including the detection of patients with LGE before LVH occurs.


Cardiovascular magnetic resonance; Fabry disease; Cardiomyopathy; Late gadolinium enhancement

Full Text:



Dimitrow PP. Heart in Fabry Disease. Journal of Rare Cardiovascular Diseases 2012;1(1):3-6. DOI 10.20418%2Fjrcd.vol1no1.21.

Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 2007; 93: 528–35. DOI 10.1136/hrt.2005.063818.

Kovacevic-Preradovic T, Zuber M, Attenhofer Jost CH, Widmer U, Seifert B, Schulthess G, Fischer A, Jenni R. Anderson-Fabry disease: long-term echocardiographic follow-up under enzyme replacement therapy. European Journal of Echocardiography 2008; 9, 729–735. DOI 10.1093/ejechocard/jen129.

Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, Machann W, Voelker W, Ertl G, Wanner C, Weidemann F. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4(6):592-601. DOI 10.1016/j.jcmg.2011.01.020.

Krämer J, Niemann M, Störk S, Frantz S, Beer M, Ertl G, Wanner C, Weidemann F. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol. 2014 Sep 15;114(6):895-900. DOI 10.1016/j.amjcard.2014.06.019.

Weidemann F, Breunig F, Beer M, Sandstede J, Turschner O, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation. 2003;108(11):1299-301. DOI 10.1161/01.CIR.0000091253.71282.04.

Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Störk S, Voelker W, Ertl G, Wanner C, Strotmann J. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524-9. DOI 10.1161/CIRCULATIONAHA.108.794529.

Kramer CM, Barkhausen J, Flamm S, Kim RJ, Nagel E. Society for Cardiovascular Magnetic Resonance and Board of Trustees Task Force on Standardized Protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. Journal of Cardiovascular Magnetic Resonance 2013, 15:91. DOI 10.1186/1532-429X-15-91.

Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. Journal of cardiovascular magnetic resonance. Official journal of the Society for Cardiovascular Magnetic Resonance. 2014;16:99. DOI 10.1186/s12968-014-0099-4.

Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circulation Cardiovascular imaging. 2013;6(3):392-8. DOI 10.1161/CIRCIMAGING.112.000070.

Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, Oudit GY. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging. 2013 Sep;6(5):637-45. DOI 10.1161/CIRCIMAGING.113.000482.

Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Arheden H. Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging. 2009;9:2. DOI 10.1186/1471-2342-9-2.

Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, Leed PJ, Elliott PM. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24(23):2151-5. DOI 10.1016/j.ehj.2003.09.017.

Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, Elliott PM; European FOS Investigators. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J. 2007; 28 (10):1228-35. DOI 10.1093/eurheartj/ehm153.

Hwu WL, Chien YH, Lee NC, et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 2009; 30(10): 1397-405. DOI 10.1002/humu.21074.

Goldman ME, Cantor R, Schwartz MF, Baker M, Desnick RJ. Echocardiographic abnormalities and disease severity in Fabry's disease. J Am Coll Cardiol. 1986;7(5):1157-61.

Linhart A, Palecek T, Bultas J, Ferguson JJ, Hrudová J, Karetová D, Zeman J, Ledvinová J, Poupetová H, Elleder M, Aschermann M. New insights in cardiac structural changes in patients with Fabry's disease. Am Heart J. 2000;139(6):1101-8. DOI 10.1067/mhj.2000.105105.

Anastasakis A, Papatheodorou E, Stergiotis A. Fabry Disease and Cardiovascular Involvement. Current Pharmaceutical Design, 2013, 19, 000-000. DOI 10.2174/13816128113199990353.

Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, Taylor AJ. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2014. DOI 10.1093/ehjci/jeu182.

Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis. 2013 Aug 6;8:116. DOI: 10.1186/1750-1172-8-116.

Kampmann C, Linhart A, Devereux RB, Schiffmann R. Effect of Agalsidase Alfa Replacement Therapy on Fabry Disease–Related Hypertrophic Cardiopathy: A 12- to 36-Month, Retrospective, Blinded Echocardiographic Pooled Analysis. Clin Ther. 2009;31:1966–1976. DOI 10.1016/j.clinthera.2009.09.008.

Shewan LG, Coats AJS, Henein M. Requirements for ethical publishing in biomedical journals. International Cardiovascular Forum Journal 2015;2:2. DOI: 10.17987/icfj.v2i1.4.


Copyright (c) 2017 Laura Dragonetti, Marcelo Pietrani, Carlos Rivas, Diego Pérez de Arenaza, Eduardo Eyheremendy, Rebeca Kozzor, Ricardo García Mónaco, James Moon

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.