Evolving Targets For Heart Failure: The Journey So Far

Giuseppe MC Rosano

1. Centre for Clinical & Basic Research IRCCS San Raffaele Pisana, via della Pisana, 235, 00163 Rome, Italy

Corresponding author:
Centre for Clinical & Basic Research IRCCS
San Raffaele Pisana,
via della Pisana, 235, 00163 Rome, Italy
Email: giuseppe.rosano@gmail.com

Abstract

The treatment of heart failure has included vasodilators, positive inotropes and most successfully neuro-hormonal blockade. Recent research has looked at metabolic and immune modulatory approaches, and implantable, mainly electrical devices. The near future in pharmacological research for heart failure remains focused on classic methodologies and small molecules, but despite significant improvements we still know relatively little of the complex interactions in HF particularly for HFP EF. Pharmacotherapy will in future be combined with advances in biotechnology, nanotechnology and devices and a digital revolution will help us to monitor patients at a distance, using wireless devices. Heart failure research has achieved much over the last 4 decades but the pace of innovation and research has not abated and future advances in this disabling condition are indeed likely.

Keywords: Heart Failure; Therapeutics; Randomised controlled trials

Citation: Rosano GMC. Evolving targets for heart failure: the journey so far. International Cardiovascular Forum Journal. 2019;17:2-5. DOI: 10.17987/icfj.v17i0.589

Introduction

Until the 1970s the only treatments for the management of heart failure were based on bed rest, restriction of physical activity, fluid restriction and pharmacological therapy limited to diuretics and digitals. At the time research efforts in developing new heart failure treatments mostly focused on the kidney rather than the heart as a target. Since then the evolution of the treatment of heart failure has been prolific, starting with the development of vasodilators, positive inotropes and more recently moving to neuro-hormonal blockade, metabolic and immune modulatory approaches, and implantable, mainly electrical devices.

Haemodynamics and Inotropy

From the mid-1970s, vasodilators had been studied with the aim of reducing afterload and to increase cardiac efficiency and cardiac output.[1] It was thought that the effect of vasodilators on left ventricular ejection fraction, ventricular diastolic pressure and cardiac energetics would be advantageous for patients with heart failure. However, the Vasodilator-Heart Failure Trial (V–HeFT I) showed that, despite short-term haemodynamic improvement, afterload reduction did not improve survival.[2] It soon became evident that the haemodynamic effects of vasodilators were not the main driver of longer-term benefits, and subsequently a series of trials showed that patients treated with pure vasodilators were at greater risk of developing worsening HF and mortality.[3–6]

The description by Sarnoff of ventricular function curves brought the idea of developing drugs aimed at improving ventricular contractility.[7] Therefore, the possibility of shifting from one Starling curve to another by improving the ‘contractile’ state of the heart became a major target. Overcoming the difficulties in measuring contractility, it becomes evident that improving the impaired contractility of the left ventricle in patients with chronic HF would be a meaningful target. Therefore, research focused on understanding the causes of the impaired myocardial contractility. The recognition of a central role of abnormal calcium movements and energy starvation stimulated the development of novel inotropic drugs. These drugs were developed on the assumption that since left ventricular ejection fraction (LVEF) correlates with survival, increasing LVEF should improve prognosis. Despite a sound rationale it becomes evident that despite an improvement in cardiac performance, the early positive inotropic agents had a detrimental effect on survival. A few years later the picture was completed by the evidence that also cardiac glycosides, the earliest inotropic agents, that had long been the mainstay of heart failure therapy, were not effective at improving survival in patients with heart failure in sinus rhythm.[8]

The neuroendocrine years

Starling’s law of the heart and the neuroendocrine response were considered as compensatory mechanisms. In the 1980s Peter Harris of the National Heart and Lung Institute in London, and his group hypothesised that the neuroendocrine activation observed in patients with heart failure was a maladaptive response and not
part of a maintained compensatory mechanism.[9–13] This novel interpretation of neuro-endocrine activation led to a new way of treating heart failure, and became considered a defining hallmark of the heart failure syndrome, persistent neuroendocrine activation. As a consequence, this new approach led to the evaluation and later introduction of angiotensin converting enzyme inhibitors (ACEIs), beta-blockers (BBs) and mineralocorticoid receptor antagonists (MRAs) as treatments for HF. ACEIs were the first class of drug to show a significant and sizeable reduction in the risk of death and hospitalisation in patients with heart failure with reduced ejection fraction (HFrEF), regardless of its severity. [14] Beta-blockers were introduced with more caution given the negative inotropic effect of first and second generation beta-blockers. They were, indeed paradoxically found to improve left ventricular ejection fraction, improve symptoms and decrease mortality and hospitalisation when administered chronically, provided of course the patient can be supported during a slow period of introduction and up-titration.[15] Both classes of drugs, ACEIs and BBs were demonstrated to reduce left ventricular remodelling and to be beneficial regardless of the aetiology of heart failure, age, race or gender.[16]

Later, the MRAs were shown to have a beneficial prognostic effect on top of therapy with ACEIs and BBs. The picture was completed with the development of newer angiotensin receptor blockers (ARBs). At this stage of neuro-endocrine focused research, atrial natriuretic peptide (ANP) was thought to be beneficial in heart failure because of its vasodilatory capacity. [17] However, this peptide had not been shown in human studies to positively modify cardiac structure, function or improve survival.[18–19]

The neuroendocrine story stimulated radical changes in the management of heart failure, from vasodilators to anti-renin angiotensin-aldosterone (RAASI) drugs, from positive inotropes to drugs with a short-term negative inotropic effect, such as BBs, that progressed to effectively become positive inotropes in heart failure over the medium to longer term due to their ability to induce left ventricular reverse remodelling and an increase in left ventricular function without increasing oxygen consumption. The effect of beta-blockers in heart failure highlighted the paradox of the altered relationship between heart rate and contraction. In normal physiological states, the contractile force of a healthy papillary muscle increases proportionately to the increase in its rate of contraction. In contrast, in HF this relationship becomes inverse, and the contraction strength decreases in response to increased heart frequency. As a result, in HF, increasing heart rate is associated with a reduction of left ventricular ejection fraction.[20] This evidence led to the introduction of a newer class of drugs that selectively reduce heart rate and increase ejection fraction, whilst be devoid of any direct effect on cardiac myocytes or peripheral vascular resistance. Ivabradine (see chapter 7), a specific inhibitor of the If current in the sinoatrial node, that induces a selective heart rate reduction, was found to have a positive effect on remodelling and ejection fraction.[21-23]

The Millennium
In the new millennium heart failure research turned to a combination of devices (which are beyond the scope of this chapter), molecular biology, genetics and stem cells. Despite huge excitement at their potential, the heralded benefit of these therapies has not yet been achieved clinically. Despite the demonstration of the molecular cause of a form of familial hypertrophic cardiomyopathy, a mis-sense mutation in the cardiac beta-myosin heavy chain gene, being reported in the early 90s, the replacement of faulty genes with correct copies delivered by viral vectors has not been proven to be effective to date. A newly discovered type of regulation termed epigenetics has been more recently identified as a possible therapeutic target for heart failure therapies.[24] Linked to epigenetics is the concept of micro RNAs (miRNAs). These are small non-coding RNA segments that regulate gene transcription and protein formation by silencing selected messenger RNA strands. Preclinical research into miRNAs suggests the importance of these molecules for many cardiac myocyte functions in the failing heart, from calcium cycling to ventricular hypertrophy.[25]

The enthusiasm for stem cell therapy led to the belief that stem cell implantation could re-generate the myocardium and improve cardiac function. Autologous bone marrow-derived mono nuclear cells were considered first for therapeutic purposes. However, the results of their use have never been compelling and this approach has been not found effective for clinical use. [26-28] Subsequently, mesenchymal stem cells harvested from the adipose tissue were also considered, but they also have been found not to have a significant therapeutic effect in patients with heart failure.[29] Hope now has focused on the therapeutic use of autologous stem cells. The efficacy of this technology remains under investigation.[26] However, the challenges of finding the optimal cell type, quantity, processing method, administration route, and establishing efficacy and safety remain unsolved.

The future
The near future in pharmacological research for heart failure remains focussed on classic methodologies and small molecules. The results in HFrEF from the PARADIGM-HF study, in which a smart fixed dose combination of sacubitril and valsartan (LCZ696) significantly improved prognosis compared with treatment with the ACEI enalapril suggests that there is still room for further developments using this approach, even though other attempts at comprehensive neurohormonal modulation have failed, such as when vaopressin and/or endothelin antagonists were added to the triad of ACEIs, BBs and MRAs.

Areas of relative failure
The past decades have led to a significant improvement in our understanding and treatment of chronic HFrEF, whereas in stark contrast, no effective therapies have been developed for acute heart failure (AHF) or for heart failure with preserved ejection fraction (HFpEF).[30] These two conditions however, are a mixed bag of different aetiologies that may well need differing and more differentiated therapeutic approaches. The identification of different phenotypes helping identify the multifaceted pathophysiology of these two conditions may be an essential precursor to the development of effective therapies.

We still lack the unifying hypotheses for both AHF and HFpEF that would allow more soundly based therapeutic approaches to be developed. We also lack for both conditions adequate surrogate end points that may shed the light on the efficacy of newer therapies at an earlier stage of the development
pathway. Many promising compounds have failed in large-scale randomized clinical trials in acute heart failure, despite the attractive conceptual foundations underpinning their use.[31–34] We are still missing the link between acute symptomatic relief and long-term risk reduction, which has not been achieved with any agent used in AHF to date.

Conclusions

Despite significant improvements in our understanding of heart failure over 4 decades we still know relatively little of the complex interactions of the disorder. Pharmaceutical is likely to play an integral role for the foreseeable future. This remains true, despite the fact that we live in a modern, technological world where advances in biotechnology, nanotechnology and devices continue to offer tantalising possibilities of replacing failing cardiomyocytes with gene or stem cell therapy or to correct the dysfunctional cells using chimeric antigen receptors. The digital revolution will help us to monitor patients at a distance, using wireless devices. This may help to identify newer innovative approaches to heart failure management through a combination of health- and bioinformatics, personalised medicine and smart drug design. Heart failure research has achieved much over the last 4 decades but the pace of innovation and research has not abated and future advances in this disabling condition are indeed likely.

Declarations of interest

The authors declare no conflict of interest.

Acknowledgements

The authors state that they abide by the authors’ responsibilities and ethical publishing guidelines of the International Cardiovascular Forum Journal.[35]

References

7. Saraff SJ. Myocardial contractility as described by ventricular function curves: observations on Starling’s law of the heart. Physiol Rev 1955;35:107–122.
34. Cannon JA, McKean AR, Jhund PS, McMurray JJV. What can we learn from RELAX-AHF compared to previous AHF trials and what does the future hold? Open Heart 2015;2:e000283.

35. Shewan LG, Coats AJS, Henein MY. Authors’ Responsibilities and Ethical Publishing. International Cardiovascular Forum Journal 2018;13:3-4, DOI: 10.17987/icfj.v13i0.525