Mineralocorticoid Receptor Antagonists

Ilaria Spoletini¹, Giuseppe MC Rosano²

1. IRCCS San Raffaele Pisana, Italy
2. Centre for Clinical & Basic Research IRCCS San Raffaele Pisana, via della Pisana, 235, 00163 Rome, Italy

Corresponding author:
Professor Giuseppe M.C. Rosano,
Centre for Clinical & Basic Research IRCCS San Raffaele Pisana,
via della Pisana, 235, 00163 Rome, Italy
Email: giuseppe.rosano@gmail.com

Abstract

The role and adverse effects of mineralocorticoid receptor overactivation in the pathophysiology of heart failure (HF) is well-recognised. MR antagonists (MRAs) have been tested in HF and shown to be effective in improving outcomes. Steroid-type MRAs spironolactone and eplerenone, have been proven to reduce mortality in HFrEF. In patients with HFrEF, the TOPCAT trial found no significant benefits of spironolactone on cardiovascular outcomes. In order to overcome the limitations of existing steroidal MRAs, novel MRAs have been recently developed, finerenone and PF-03882845. These newer agents aim to optimise the benefits of MRA’s and reduce their side-effects, especially hyperkalaemia.

Keywords: heart failure; mineralocorticoid receptor antagonists

Citation: Spoletini I, Rosano GMC. Mineralocorticoid Receptor Antagonists. International Cardiovascular Forum Journal. 2019;17:34-36. DOI: 10.17987/icfj.v17i0.603

Introduction

The role of mineralocorticoid receptor (MR) overactivation in the pathophysiology of heart failure (HF) is well-recognised.[1] Chronically elevated aldosterone levels have been described in the failing heart,[2] and these are thought to contribute both towards structural and functional changes in the heart such as coronary endothelial dysfunction, myocardial apoptosis, increased arrhythmogenicity, and reactive myocardial fibrosis as well as systemically promoting promote water and sodium retention.[3,4] Clinically MR overactivation leads to arterial hypertension, ventricular hypertrophy and increased vascular stiffness, all of which exacerbate the progression of HF, as shown in Figure 1.[1] Accordingly, high plasma levels of aldosterone in HF are associated with adverse outcomes, such as increased risk of mortality, impaired functional capacity, and adverse renal and extra-renal effects.[2]

In addition to these adverse affects of exaggerated MR activation, clinically MR antagonists (MRAs) have been tested in HF syndromes and shown to be effective in improving outcomes. Steroid-type MRAs spironolactone and eplerenone, which block receptors that bind aldosterone and to a lesser extent other corticosteroids, have been proven to reduce mortality in HF with reduced ejection fraction (HFrEF). The Randomized ALdactone Evaluation Study (RALES)[5] demonstrated the therapeutic benefits of 25 mg/day spironolactone in 1663 patients with severe heart failure of HFrEF type, showing a 30% reduction in all-cause mortality (HR 0.70; 95 % CI, 0.60 to 0.82; P<0.001). There was also a 35% lower risk of hospitalization for worsening heart failure (HR, 0.65; 95 % CI, 0.54 to 0.77; P<0.001). Side effects of note included gynaecomastia or breast pain in 10 percent of men on spironolactone, compared with 1% with placebo (P<0.001). The incidence of serious hyperkalaemia was however minimal in both groups of patients in the trial, although an increased incidence of this was seen after the resultant increased use of spironolactone clinically in the years that followed the reporting of this landmark trial. Following this, the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF), in 2737 patients with NYHA class II HFrEF, found a significant reduction in mortality from any cause or hospitalisation for HF in patients treated with eplerenone compared to placebo (HR, 0.63; 95% CI, 0.54 to 0.74; P<0.001). [6] There was also a 24% reduction in the risk of death (HR, 0.76; 95% CI, 0.62 to 0.93; P=0.008). Potassium levels exceeding 5.5 mmol per liter occurred in 11.8% of patients in the eplerenone group and 7.2% of those in the placebo group (P<0.001). The EPHESUS trial tested eplerenone in 3313 patients with acute myocardial infarction (MI) complicated by left ventricular dysfunction and heart failure.[7] It showed a significant reduction in the risk of death (HR, 0.85; 95 %CI, 0.75 to 0.96; P=0.008). In addition death from cardiovascular causes or hospitalization for cardiovascular events, was reduced by eplerenone (HR 0.87; 95 %CI, 0.79 to 0.95; P=0.002). The rate of serious hyperkalaemia was 5.5 percent in the eplerenone group and 3.9 percent in the placebo group (P=0.002).

© 2019 Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution CC-BY-4.0 license CC-BY-4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction, provided the original work is properly cited. Published by Barcaray (International) Publishing.

* Corresponding author. E-mail: giuseppe.rosano@gmail.com

ISSN: 2410-2636
Hyperkalaemia is one of the major reasons for the low use of Steroidal MRAs remain underused in clinical practice.[11,12] Limitations of steroidal MRAs

In patients with preserved ejection fraction (HFpEF), the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial found no significant benefits of spironolactone on cardiovascular outcomes. [8] Although, a meta-analysis of randomised clinical trials of MRA's in HFrEF patients[9] have suggested that MRAs may reduce hospitalisations, improve quality of life, and improve echocardiographic measurements of diastolic function, no effect has been seen on all-cause mortality, and as result guidelines have recommended MRA's with a Class 1A recommendation for chronic HFrEF patients [10] and similarly for post-MI HFrE, but have not made a recommendation in the HFpEF setting. The trials to date have demonstrated the effectiveness of “classic” steroidal MRAs but efforts continue to develop better tolerated agents which are non-steroidal in structure.

Limitations of steroidal MRAs

Steroidal MRAs remain underused in clinical practice.[11,12] Hyperkalaemia is one of the major reasons for the low use of steroidal MRAs in routine practice. Increased potassium levels are more often observed in HFrEF patients than HFrEF [3], and appears to be more commonly observed with spironolactone compared to eplerenone, especially in at-risk patients [5]. Spironolactone is also associated with greater rates of impotence, gynaecomastia or breast pain, than eplerenone [5,7]. This is probably due to the more prolonged half-life of spironolactone. On the other hand, due to such a longer duration of its pharmacodynamic effect, spironolactone has also a greater effect in reducing blood pressure than eplerenone.[13] For both drugs, the optimal dose and frequency of dosing should be defined taking into account the pre-therapy serum potassium levels and renal function.[13] Beyond hyperkalaemia and gynaecomastia, other common reasons for discontinuing steroidal MRAs are kidney dysfunction and menstrual disorders.[14,15] Hyperkalaemia and renal function deterioration are particularly severe when steroidal MRAs are given on top of angiotensin converting enzyme inhibitors or angiotensin receptor blockers in “real life” settings.[16,12]

Novel MRAs for HF

In order to overcome the limitations of existing steroidal MRAs, novel MRAs have been recently developed for targeting cardiac fibrosis.[4] Two selective non-steroidal inhibitors of MR, finerenone (or BAY-94-8862 from Bayer) and PF-03882845 (from Pfizer) have been investigated. Both these drugs have been shown to have beneficial effects on renal and cardiac fibrosis, with protective effects that are comparable to those obtained with eplerenone. [1,4] Finerenone has a low affinity for androgen, glucocorticoid, and progesterone receptors[17], but a higher selectivity towards MR. For this reason, finerenone may have a more favourable risk/benefit profile compared to spironolactone and eplerenone, with fewer adverse effects on serum potassium levels or renal function[17], especially in patients with diminished kidney function who are more susceptible to electrolyte disturbances. Murine models have demonstrated finerenone to reduce cardiac hypertrophy, plasma prohormone of brain natriuretic peptide, and proteinuria more efficiently than eplerenone.[18] A recent meta-analysis in patients with chronic HF found that finerenone decreased N-terminal pro-B-type natriuretic peptide, urinary albumin/creatinine ratio and other biochemical indicators, in a dose-dependent manner.[19] The study also compared the efficacy and safety of finerenone versus steroidal MRAs, finding that finerenone at 10mg/d was as effective as 20 to 50mg/d of steroidal MRAs in improving anti-ventricular remodeling, with a lower incidence of adverse events.[19] Thus, finerenone may offer end-organ protection in HF patients with a reduced risk of hyperkalaemia.[18] Other approaches include the possible co-administration of potassium lowering agents, although the long-term clinical effects of this approach remain to be proven in adequately sized clinical trials.[20-23]

Limitations of novel MRAs

The clinical use of finerenone is still limited by its inadequately defined clinical dose, ranging from 1.25 to 20mg/d according to the reviewed studies.[19] Further progress is therefore needed to reach a consensus regarding its optimal dosage. Clinical trials are also needed to confirm its theoretical advantages clinically and demonstrate clinical efficacy and safety in HF patients. New combination therapies with novel MRAs are also under investigation, such as optimizing the anti-fibrotic effects of MRAs by combining with other therapies (e.g. metformin) in order to reduce fibrosis allowing the MRA to be used at a dose that reduces the risk of hyperkalaemia. reviewed elsewhere.[4] The development of these novel targets is in the very early stages and requires further research.[4]

Conclusions

Impressive trial data data confirm the importance of MR signaling as a therapeutic target for HF, and one that remains an active area of novel drug development. Newer agents and newer approaches will aim to optimise the benefits of MRA’s and reduce their side-effects, especially hyperkalaemia.

Declarations of interest

The authors declare no conflict of interest.

Acknowledgements

The authors state that they abide by the authors’ responsibilities and ethical publishing guidelines of the International Cardiovascular Forum Journal.[24]
References
11. Maggioni AP, Anker SD, Dahlstrom U et al (2013). Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12,440 patients of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 15: 1173-84.

24. Shewan LG, Coats AJS, Henein MY. Authors’ Responsibilities and Ethical Publishing. International Cardiovascular Forum Journal 2018;13:3-4, DOI: 10.17987/icfj.v13i0.525